

Security Summit Cagliari, 18 settembre 2024

The rise and fall of ModSecurity and the Core Rule Set

(ovvero come evadere i WAF tramite degli attacchi adversarial)

Davide Ariu | CEO & Co-Founder

whoami

PLURIBUS ONE CEO & Co-Founder

OWASP Italy Co-Chair

15 Years as academic researcher in Cybersecurity & AI (Univ. of Cagliari, Georgia Tech)

www.apptake.eu Project Coordinator

Mainteiner of **UNBOXED APPSEC** (http://davideariu.substack.com)

https://www.linkedin.com/in/davideariu/

Acknowledgments

http://apptake.eu

http://elsa-ai.eu

https://kinaitics.eu

has been funded by the European Union under Grant Agreement 101070176 has been funded by the European Union under Grant Agreement 101070617

APPTAKE

has been funded under Grant Agreement No. 101128082 is supported by the European Cybersecurity Competence Centre

Acknowledgments

http://nerocybersecurity.eu

NFRO

https://cybersuiteproject.eu

has been funded under Grant Agreement No. 101127411 is supported by the European Cybersecurity Competence Centre

CYBERSUITE has been funded under Grant Agreement No. 101145861 is supported by the European Cybersecurity Competence Centre

Acknowledgments

"ModSec-Learn: Boosting ModSecurity with Machine Learning" - C. Scano, G. Floris , B.
 Montaruli, L. Demetrio, A. Valenza, L. Compagna, D. Ariu, L. Piras , D. Balzarotti, and
 B. Biggio - DCAI - Salamanca 26th - 28th June, 2024

 "Adversarial ModSecurity: Countering Adversarial SQL Injections with Robust Machine Learning" – B. Montaruli, L. Demetrio, A. Valenza, L. Compagna, D. Ariu, L. Piras, D. Balzarotti, B. Biggio - arXiv August 2023

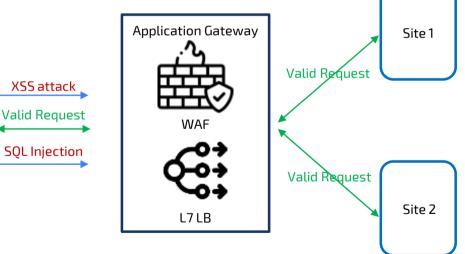
UNIVERSITA DEGLI STUDI DI GENOVA

OWASP AppSec Lisbona 2024

Extended Version of this Talk

https://www.youtube.com/watch?v=LfQBIN6xYQY

Organization of this presentation


- 1. Introduction to WAFs and their detection mechanisms
- 2. Introduction to the OWASP CRS (key concepts)
- 3. Original research results #1: boosting CRS performances with ML (ModSec-Learn)
- 4. **Original research results #2**: making the CRS robust against adversarial attacks (*AdvModSec*)

Web Application Firewalls Fundamentals

- Deployed "in front" of web applications to protect them from attacks
- WAFs are a quick and easy solution, but they DO NOT remove vulnerabilities, just hide them under the rug
- Very useful to "patch" applications, also block some "unexpected" attacks, but far from perfect

Components of a WAF Detection Engine

er is Sicarcas Peferensias

Signature Based Detection Ruleset Ruleset Ru	uleset ML Based Detection	
***	WAF detection engine.	
OWRSP ModSecurity Core Rule Set Mer Will Parket	 The <i>rulesets</i> are the elements actually responsible for the definition of the attacks It is basically a set of regEx applied at the HTTP protocol layer Can be applied both on the headers and the body of requests and 	
	responses	
	13 SF	FCUD

Key CRS Concepts

The pivotal role of the Core Rule Set

WAF	Free plan	Free trial	Rules	ML services
Wallarm	x	✓ (28 days)	Proprietary (OWASP Top 10 + API)	Wallarm AI Engine
CloudFlare	1	(30 days)	Proprietary (OWASP Top 10)	WAF-ML (only for SQL-i and XSS)
AWS	×	× (PAYG)	AWS rules (CRS) or third-party (Fortinet, F5)	Amazon Lookout for Metrics (add-on service)
Azure	x	✗ (200\$ credit for 30 days)	OWASP CRS 3.2	Microsoft Sentinel (add-on service)
Google	×	x (300\$ credit)	OWASP CRS 3.3	Adaptive Protection (only DDoS)
Fortinet	×	1	Proprietary (OWASP Top 10 + API)	FortiWeb ML (Anomaly & hot detection)
F5	x	7 (30 days)	Proprietary (OWASP Top 10 + API)	NGINX App Protect DoS & Adaptive Violation Rating of WAF
Fastly	x	1	Proprietary (OWASP Top 10 + API)	Fastly SmartParse
Imperva	×	/ (30 days)	Proprietary (OWASP Top 10 + API)	Imperva Attack Analytics

OWASP ModSecurity Core Rule Set The 1" Line of Defense

The OWASP Core Rule Set

OWASP ModSecurity Core Rule Set

A *flagship* OWASP project

• The Core Rule Set (CRS) is a set of generic attack detection rules for use with ModSecurity, Coraza, or other compatible Web Application Firewalls.

Request Rules

REQUEST-905-COMMON-EXCEPTIONS.conf REQUEST-911-METHOD-ENFORCEMENT.conf REQUEST-920-PROTOCOL-ENFORCEMENT.conf REQUEST-920-PROTOCOL-ATTACK.conf REQUEST-922-MULTIPART-ATTACK.conf REQUEST-930-APPLICATION-ATTACK-LFI.conf REQUEST-931-APPLICATION-ATTACK-RFI.conf REQUEST-932-APPLICATION-ATTACK-RFI.conf REQUEST-933-APPLICATION-ATTACK-RFI.conf REQUEST-933-APPLICATION-ATTACK-RFI.conf REQUEST-934-APPLICATION-ATTACK-PHP.conf REQUEST-934-APPLICATION-ATTACK-GENERIC.conf REQUEST-941-APPLICATION-ATTACK-SS.conf REQUEST-942-APPLICATION-ATTACK-SQLI.conf REQUEST-943-APPLICATION-ATTACK-SSION-FIXATION.conf REQUEST-944-APPLICATION-ATTACK-JAVA.conf

Response Rules

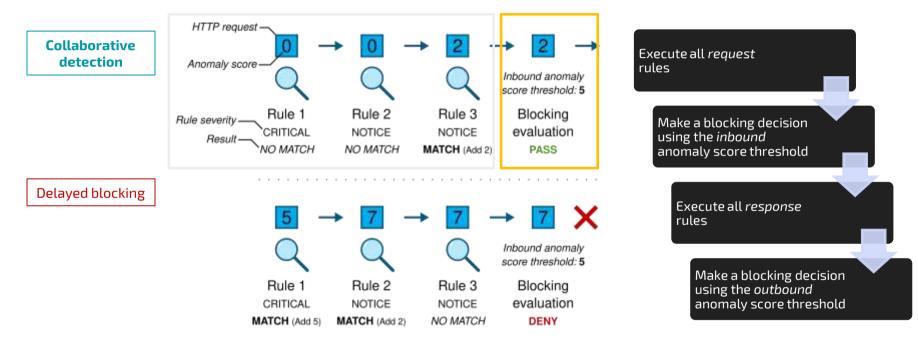
RESPONSE-950-DATA-LEAKAGES.conf RESPONSE-951-DATA-LEAKAGES-SQL.conf RESPONSE-952-DATA-LEAKAGES-JAVA.conf RESPONSE-953-DATA-LEAKAGES-PHP.conf RESPONSE-954-DATA-LEAKAGES-IIS.conf RESPONSE-955-WEB-SHELLS.conf RESPONSE-959-BLOCKING-EVALUATION.conf

Source: https://github.com/coreruleset/coreruleset/tree/main/rules

The OWASP Core Rule Set

Key concepts from the Core Rule Set will be recalled in the following slides

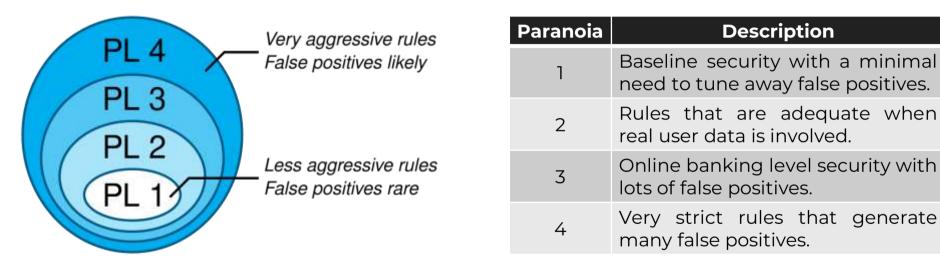
- Rules structures -> **Severity** (associated with every single rule)
- Anomaly Scoring (assigned to the requests/responses)
- Paranoia Level (used to select the set of rules)



OWASP CRS – Rules structure

<pre>SecRule REQUEST_HEADERS:Content-Length "!@rx ^\d+\$" \ "id:920160,\ phase:1,\</pre>		
<pre>block,\ t:none,\ msg:'Content-Length HTTP header is not numeric',\ logdata:'%{MATCHED_VAR}',\ tag:'application-multi',\</pre>	Severity Level	Default Anomaly Score
tag:'language-multi',\ tag:'platform-multi',\	CRITICAL	5
tag:'attack-protocol',\ tag:'paranoia-level/1',\	ERROR	4
tag: 'OWASP_CRS', \	WARNING	3
tag:'capec/1000/210/272',\ ver:'OWASP_CRS/3.4.0-dev',\	NOTICE	2
<pre>severity:'CRITICAL',\ setvar:'tx.anomaly_score_pl1=+%{tx.critical_anomaly_score_</pre>	pre}"	

OWASP CRS – Anomaly scoring

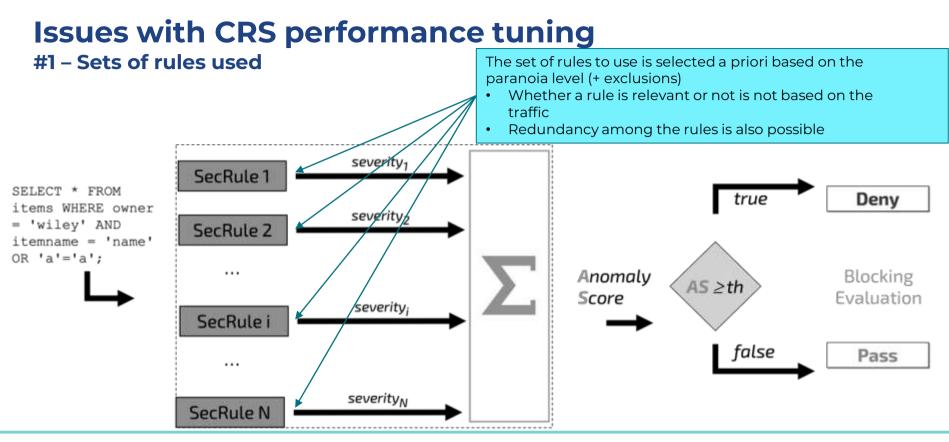


Source: https://coreruleset.org/docs/concepts/anomaly_scoring/

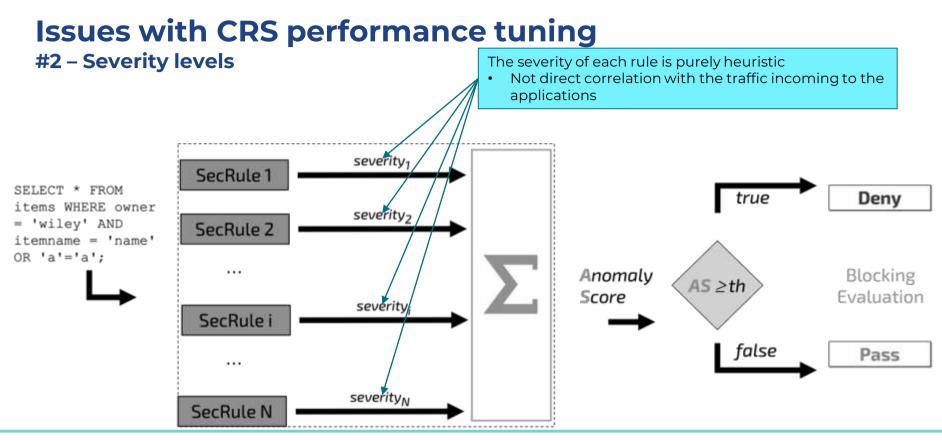
SECURITY SUMMIT


OWASP CRS – Paranoia Level

Source: https://coreruleset.org/docs/concepts/paranoia_levels/



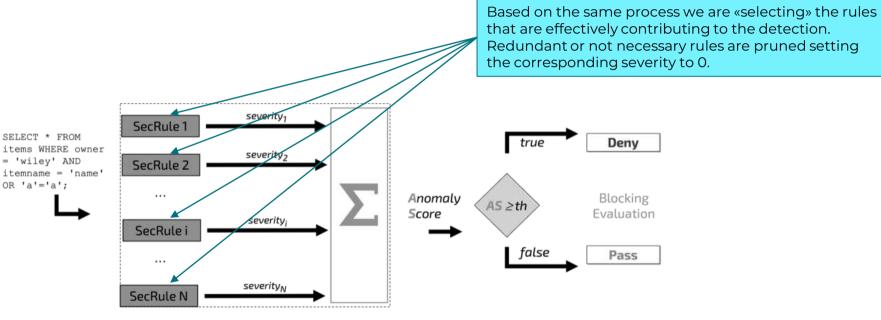
A practical example of how the CRS works



Original Research Results #1 Boosting CRS performances with ML (MLModSec)

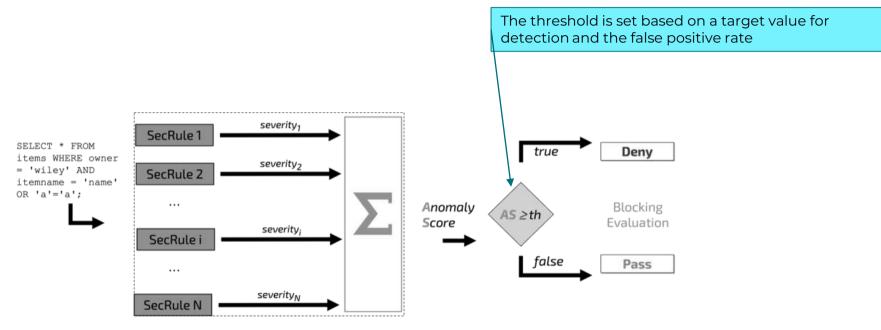
Bring ML into the CRS decision making process Step#1 - Severity estimates

Based on the traffic (legitimate, malicious), it is possible to find an estimate for the rule severity values which weights more the rule that contribute significantly to the detection without generating false positives severity SecRule 1 true Denv items WHERE owner severity₂ SecRule 2 itemname = 'name' ... Anomalv Blocking AS ≥th Score Evaluation severity; SecRule i false Pass ... severity_№ SecRule N


SELECT * FROM

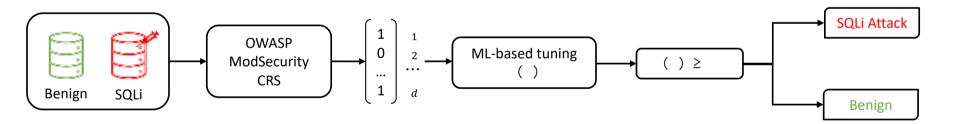
= 'wiley' AND

OR 'a'='a';


Bring ML into the CRS decision making process Step#2 - Rules Selection

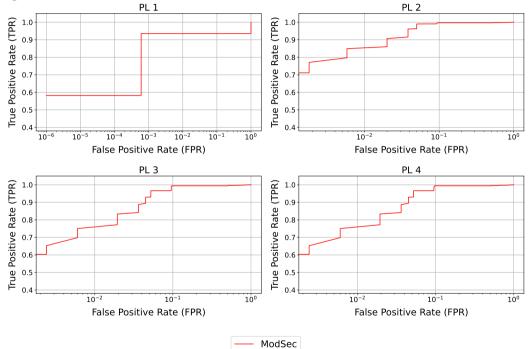
Clusit

Bring ML into the CRS decision making process Step#3 - Threshold estimate



ModSec-Learn Boosting ModSecurity with Machine Learning

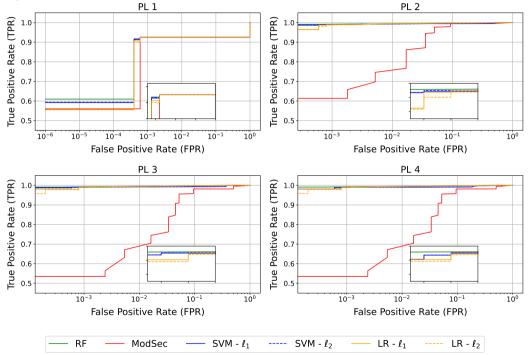
The approach has been evaluated on SQLi attacks but it is general and extends to other attack categories as well



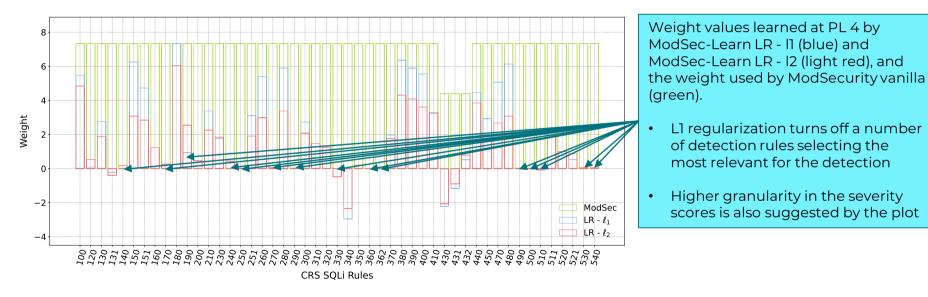
ModSec-Learn: Boosting ModSecurity with Machine Learning https://arxiv.org/abs/2406.13547

Vanilla ModSecurity

Clusit


Detection rate @1% False Positives

	PL1	PL2	PL3	PL4
ModSec vanilla	$\boldsymbol{92.50\%}$	75.45%	68.55%	68.55%
ModSec-Learn SVM (ℓ_1)	92.50%	99.22 %	99.04%	99.02%
ModSec-Learn SVM (ℓ_2)	92.50%	99.22 %	99.04%	99.02%
ModSec-Learn LR (ℓ_1)	92.50%	99.34%	99.35%	99.35 %
ModSec-Learn LR (ℓ_2)	92.50%	99.34%	99.34%	99.34 %
ModSec-Learn RF	92.50%	99.41%	99.45%	99.45 %


Lowering the false positive rate

Impact on the rules severity

Original Research Results #2 Making the CRS Robust against Adversarial

Attacks (AdvModSec)

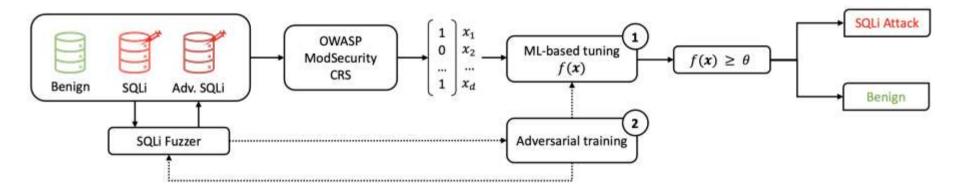
Facing Adversarial Attacks

In the context of WAFs, the problem of finding SQLi attacks that are able to bypass the target WAF is *adversarial* in nature \rightarrow **adversaries manipulate samples to evade detection**

```
SecRule REQUEST_COOKIES|!REQUEST_COOKIES:/__utm/|!REQUEST_COOKIES:/_pk_ref/|REQUEST_COOKIES_NAMES|ARGS|XML:/* "@rx
    (?:/\*!?|\*/|[';]--|--[\s\r\n\v\f]|--[^-]*?-|[^&-]#.*?[\s\r\n\v\f]|;?\\x00)"
    "id:942440,
    block,
    msg:'SQL Comment Sequence Detected',
    logdata:'Matched Data: %{TX.0} found within %{MATCHED_VAR_NAME}: %{MATCHED_VAR}',
    tag:'attack-sqli ',
    tag:'paranoia-level/2',
    ver:'OWASP_CRS/3.3.4',
    severity:'CRITICAL',
    setvar:'tx.anomaly_score_pl2=+%{tx.critical_anomaly_score}',
    setvar:'tx.sql_injection_score=+%{tx.critical_anomaly_score}'"
```

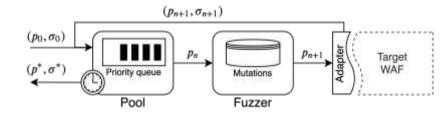
Detected by rule 942440

NOT Detected by rule 942440 → 2


admin' OR 1=1;--' admin' OR 1=1; --'

Adversarial ModSecurity

Countering Adversarial SQL Injections with Robust Machine Learning



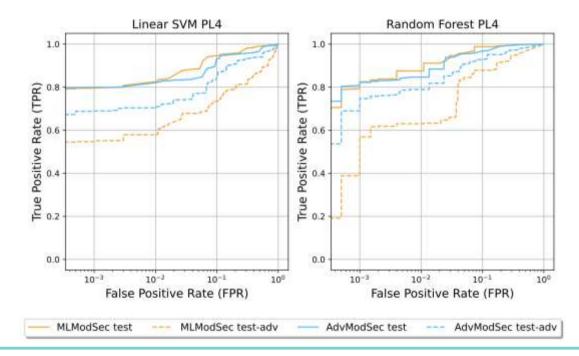
Adversarial ModSecurity: Countering Adversarial SQL Injections with Robust Machine Learning https://arxiv.org/abs/2308.04964

WAF-a-Mole Manipulations

Mutation	Example
Case Swapping	admin' OR 1=1# \Rightarrow admin' oR 1=1#
Whitespace Substitution	admin' OR 1=1# \Rightarrow admin'\t\rOR\n1=1#
Comment Injection	admin' OR 1=1# \Rightarrow admin'/**/OR 1=1#
Comment Rewriting	admin'/**/OR 1=1# \Rightarrow admin'/*xyz*/OR 1=1#abc
Integer Encoding	admin' OR 1=1# \Rightarrow admin' OR 0x1=(SELECT 1)#
Operator Swapping	admin' OR 1=1# \Rightarrow admin' OR 1 LIKE 1#
Logical Invariant	admin' OR 1=1# ⇒ admin' OR 1=1 AND 0<1#

Optimizers

- Guided mutational fuzzer
- Random


L. Demetrio et al. "WAF-A-MoLE: evading web application firewalls through adversarial machine learning", 2020

https://github.com/AvalZ/WAF-A-MoLE

SECURITY SUMM

Evaluating Robustness against Adversarial Attacks

Final remarks

- Shown two ways to integrate ML in the CRS/ModSecurity decision process
 - ModSec-Learn to estimate the severity of the rules based on the traffic
 - AdvModSec to make the CRS & ModSecurity resilient against adversarial attacks
- The ModSec-Learn approach can be implemented using a simple, linear, classifier
 - No need for integration: just use the *weights* provided by the classifier as *severity* values for the rules
 - Check the code at https://github.com/pralab/modsec-learn

More at OWASP AppSec Lisbona 2024

Extended Version of this Talk

https://www.youtube.com/watch?v=LfQBIN6xYQY

New Project - OWASP WARM

WAF Advanced Ruleset Management

PROJECTS CHAPTERS EVENTS ABOUT Q

OWASP WAF Advanced Ruleset Management

Stay tuned on https://owasp.org/www-project-waf-advanced-ruleset-management/

A Attention Security, Printing A Bear and L Events Agency

Security Summit Cagliari, 18 settembre 2024

Contatti

davide.ariu@pluribus-one.it

